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Negative Integral Powers of a Bidiagonal Matrix 

By Gurudas Chatterjee 

Abstract. The elements of the inverse of a bidiagonal matrix have been expressed in a 
convenient form. The higher negative integral powers of the bidiagonal matrix exhibit an 
interesting property: the (y )th element of the (-m)th power is equal to the product of the 
corresponding element of the inverse by a Wronski polynomial, viz., the complete symmetric 
function of degree (m - 1) of the diagonal elements, di, di+, ..., dj, of the inverse matrix. 

1. Introduction. Positive integral powers of a bidiagonal matrix with a fixed 
diagonal element b and superdiagonal element 1, have been reported by Varga [1]. 
In the present note, we shall find the negative integral powers of a general n X n 
bidiagonal matrix B, having diagonal elements bi, i = 1, 2, .. ., n, and superdiagon- 
al elements cj, j = 1, 2, ..., n - 1. 

One may express B = (I - F)D-1, where I is the identity matrix and D1 a 
diagonal matrix composed of the diagonal elements of B. F is null, except for the 
elements 1,+ I = -ci/bi+?, for i = 1, 2, . . ., n - 1, on its first superdiagonal. The 
powers of 1F can easily be evaluated. In fact, the nonzero elements of Fm are given by 

i+m-1 

(ym)ii+m = II 
(-ck/bk+l), for i = 1, 2, . . ., n -m, 

k=i 

occurring only on the mth superdiagonal. 
The inverse El of B may be calculated either by the usual method of cofactors, 

or from the following expansions: 

El = B` = D[I - IF 

= D[I + F2+ 3 + ... +n- 

The elements of El may be written in a convenient form as: 

(la) el(ij) = 0 for i >j, 

(lb) = l/bj = dj for i =j, 

j-1 
(lc) = di j (- cklbk+l) for i <j. 

k=i 

The inverse is upper triangular but is not necessarily bidiagonal. 

2. Powers of the Inverse. The product of E with itself is a matrix E2, which is 
also upper triangular. Elements of E2 are given by 

e2(ij) = el(ij) I [dkl for i j, 
(2) k=i 

= 0 fori>j. 
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Result (2) may be generalized. In fact, the nth power of El is an upper triangular 
matrix En where the (i,j)th element, for i ' j, is given by 

j k1 k2 ke.3 k.-2 

(3) en(,j) = el (ij) 2 ** [dk dk2ddk3 dkn 2dkn- I 
k =i k2=i k3=i kn-2=i kn-1 =i 

Proof. Let us assume that result (3) is true for n = m. 

I 
em+l (i,j) = z [em(i, ko)el (ko, )], 

ko =i 

the other terms in the summation for 1 _ ko ? i - 1 andj + 1 ? ko ? n, are zero, 
as both em(p,q) and el(p,q) are zero forp > q. 

By writing the expression for em(i, ko) from result (3), which is assumed to be 
valid for n = m, we have 

J 

em+i (ij) = A [el (i, ko)ei (ko j)] 
ko =i 

i ki k2 km_3 km-2 

* [dkldk2dk3 k*dk_2dkm- ]- 

ki=i k2=i k3=i km-2 =i km-, =i 

The first summation is done by Eq. (2) and the expression reduces to 

j j ki k2 k.-3 km-2 

em+l(itj) = e,(idj) E [dko] E 
k 

2 
km. dm] 

1: [dkdkc2d3 km2dkm14 
ko=i k, =i k2=i k3=i km-2=i kmi_ =i 

After grouping the summations together, we find that the result is true for 
n = m + 1. 

It has already been found true for n = 2 in Eq. (2), and therefore, by 
mathematical induction, we have the proof. 

3. Thanks are due to the Director of this Institute for his kind permission to 
publish this paper. 
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